Research article

Acetyl-L-carnitine ameliorates mitochondrial damage and apoptosis following spinal cord injury in rats

Zhen-yu Zhang a, Zhong-kai Fan b, Yang Cao b, Zhi-qiang Jia b, Gang Li b, Xiao-dong Zhi b, De-shui Yu b, Gang Lv a,∗

a Department of Orthopaedics, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
b Department of Orthopaedics, The First Affiliated Hospital, Liaoning Medical University, Jinzhou 121000, Liaoning Province, China

HIGHLIGHTS

• ALC prevented ultrastructural changes of mitochondria after SCI.
• ALC improved dynamic alternations of mitochondria after SCI.
• ALC suppressed cell apoptosis following SCI.

ARTICLE INFO

Article history:
Received 11 December 2014
Received in revised form 28 May 2015
Accepted 9 June 2015
Available online 12 June 2015

Keywords:
Acetyl-L-carnitine
Mitochondria
Apoptosis
Spinal cord injury
Fusion
Fission

ABSTRACT

Acetyl-L-carnitine (ALC) facilitates the entry and exit of fatty acids from mitochondria and plays an essential role in energy metabolism. Although ALC is known to exert neuroprotective effects in multiple neurological diseases, its effects on spinal cord injury (SCI)-induced mitochondrial impairments and apoptosis remain unclear. In this study, we aimed to evaluate the protective effects of ALC on mitochondrial dysfunction and apoptosis induced by SCI in a rodent model. Our results indicate that SCI elicits dynamic alternations in the expression of mitochondria-related proteins. Transmission electron microscopy analysis showed that ALC administration abrogated key ultrastructural abnormalities in mitochondria at 24 h after SCI by maintaining mitochondrial length, reducing the number of damaged mitochondria, and reversing mitochondrial score (P < 0.05 compared with SCI group). In addition, ALC administration maintained the mitochondrial membrane potential and mitochondrial Na+–K+–ATPase activity following SCI (P < 0.05 compared with SCI group). ALC administration reversed the downregulation of mitofusin 1 (Mfn1), Mfn2, Bcl-2, and the upregulation of dynamin-related protein 1 (Drp1), mitochondrial fission 1 (Fis1), Bcl-2-associated X protein (Bax) and cytosol cytochrome c (cyto-CytC) induced by SCI (P < 0.05 compared with SCI group). Finally, ALC administration greatly reduced the percentage of apoptotic cells compared with the SCI group (P < 0.01). In conclusion, our findings demonstrated that ALC ameliorated SCI-induced mitochondrial structural alternations, mitochondrial dysfunction, and apoptosis.

© 2015 Published by Elsevier Ireland Ltd.

1. Introduction

Spinal cord injury (SCI) is a severe neurological disorder that affects thousands of individuals annually and leads to lifelong disabilities in patients [1]. Despite the fact that the neuropathology of SCI remains unclear, mounting evidence suggests that apoptosis, the process of programmed cell death, in neurons and glia, contributes significantly to SCI-induced secondary damage [2–4].

Mitochondria are crucial intracellular organelles that determine cell fate via numerous essential biosynthetic and metabolic pathways [5]. Importantly, mitochondrial morphology and integrity play essential roles in eliciting cell apoptosis in response to various apoptotic signals [6]. During apoptosis, mitochondria undergo dynamic changes. The ultrastructure and morphological alternations in mitochondria are regulated by the equilibrium between mitochondrial fusion and fission events [7]. Several proteins have been implicated in the dynamic changes of mitochondria, including dynamin-related protein 1 (Drp1), mitochondrial fission 1 (Fis1), mitofusin (Mfn) 1 and 2, cytochrome c (CytC), Bcl-2 and Bcl-2-associated X protein (Bax) [5].

Acetyl-L-carnitine (ALC), a molecule generated by acetylation of carnitine in the mitochondria, has been shown to play an essential role in the maintenance of mitochondrial integrity and energy metabolism [8]. ALC has the ability to cross the blood-brain barrier [9]. Karalija et al. revealed that ALC administration rescued the death of motor neurons in adult rats following SCI [10]. In
addition, intraperitoneal injection of 300 mg/kg ALC at 15 min, 30 min, 60 min, or 6 h post-injury greatly ameliorated mitochondrial dysfunction in a rat SCI model [11]. However, the molecular mechanism underlying the protective role of ALC in mitochondria remains unclear.

In the present study, we investigated the morphological alterations of mitochondria following SCI in rats, and determined the potential effects of ALC in terms of mitochondrial dysfunction. Moreover, putative molecular mechanisms underlying ALC-mediated mitochondrial protection were examined. Our findings may provide a novel strategy for preventing mitochondrial dysfunction following SCI.

2. Materials and methods

2.1. Preparation of mitochondrial, cytosol, and total protein extracts

Approximately 15 mm-length of spinal cord center at T10 was collected. The mitochondrial and cytosol proteins were extracted from tissues using protein extraction kit according to manufacturer’s instructions (Applygen Technologies Inc., Beijing, China). The protein concentration was determined using bicinichonic acid (BCA) protein assay kit (Beyotime Institute of Biotechnology, Haimen, Jiangsu, China). Mitochondria extracts were used for determination of mitochondrial function. Cytosol extracts were used for analyzing Cytc expression. Total protein extracts were used for examining the protein expressions of Mfn1, Mfn2, Drp1, Fis1, Bcl-2 and Bax.

2.2. Transmission electron microscopy (TEM) analysis

Under anesthesia, rats were perfused with 0.25% glutaraldehyde and 4% paraformaldehyde (PFA) solution (1/1; v/v). Approximately 3-mm-length spinal cord tissue that was 1-mm away from the site of hit area (head-end or tail-end) was removed. Head-end spinal gray matter tissue (1-mm-length distal) was used for TEM analysis, while tail-end spinal cord tissue was fixed in 4% PFA followed by TUNEL analysis. For each sample, 10 serial ultrathin sections were cut into 70 nm thick. After an interval of 20 μm, another 10 serial sections (a package) were cut. A total of 100 sections were prepared, and one section was randomly selected from each package. Using this method, 10 sections were randomly selected and were double stained with uranyl acetate and lead citrate. Images were obtained under an H-7650 TEM (Hitachi Science Systems, Ltd, Japan) with a magnification of 20,000. Two or three different regions of interest (ROIs) per slice were captured. The number of ROIs was dependent on the size of neurons in each observation field, i.e., selecting 3 non-overlapping ROIs for big neurons, while 2 ROIs for small neurons. The cytosol of the cells was captured. The ultrastructure and function of mitochondria were analyzed as described previously [12,23,24]. The length of the maximum cross-sectional diameter was measured using the scale bar tool of Photoshop CS3 software (Adobe, USA). The degree of mitochondrial impairment was scored as follows: 0, normal mitochondrial; 1, normal ultrastructure of the crests and matrix but absence of granular deposits; 2, loss of matrix granules and clarification of the matrix without breaking of crests; 3, loss of matrix granules and uniform clarification of the matrix and disruption of crests; 4, loss of integrity of the mitochondrial membranes. The average mitochondrial length, score and the number of mitochondria per 1 μm² cytosolic area in each cell were calculated. All micrographs were examined in a blind fashion by two experts unknown about the animal study and sample source. Data were calculated and expressed as mean ± SD.

2.3. Evaluation of the mitochondrial membrane potential

The mitochondrial membrane potential was examined by a lipophilic cationic dye JC-1 [25]. A total of 100 μL mitochondrial extracts (1 μg/μL) were used for this analysis. JC-1 staining was conducted using JC-1 detection kit according to the manufacturer’s instructions (Beyotime Institute of Biotechnology). The fluorescence intensities were examined using a fluorescence spectrophotometer (Precision and Scientific Instrument Co., China). The ratio of the fluorescence intensity at 590 nm to the fluorescence intensity at 530 nm (F590 nm/F530 nm) was used as an indicator of the membrane potential.

2.4. Determination of mitochondrial Na⁺-K⁺-ATPase activity

A total of 400 μL mitochondrial extracts (1 μg/μL) were used for determination of mitochondrial Na⁺-K⁺-ATPase activity. The mitochondrial Na⁺-K⁺-ATPase was analyzed using a detection kit according to the manufacturer’s instructions (Nanjing Jiancheng Biology Engineering Institute, China). The absorbance was examined using a fluorescence spectrophotometer (Precision and Scientific Instrument Co., China). The mitochondrial Na⁺-K⁺-ATPase activity was assessed by the following equation: Mitochondrial Na⁺-K⁺-ATPase activity = ([OD sample − OD control]/OD standard sample) × the concentration of standard sample × dilution × 6/the concentration of sample.

3. Results

3.1. SCI altered the expression levels of mitochondria-related proteins

As shown by Fig. 1, the expression levels of Mfn1 and Mfn2 were significantly elevated at 4 h and 8 h after SCI (P < 0.05 compared with control), and were gradually decreased as time progressed (16 h and 24 h). In contrast, the protein levels of Drp1 and Fis1 were markedly downregulated at 4 h and 8 h after SCI (P < 0.05 compared with control), and were gradually elevated as time progressed (16 h and 24 h). In addition, cytosol Cytc (cyto-CytC) was gradually upregulated following SCI in a time-dependent pattern (P < 0.05 compared with control). Based on these observations, we examined the morphological and dynamic changes of mitochondria at 24 h following SCI.

3.2. ALC reversed SCI-induced ultrastructural alterations in mitochondria

TEM analysis showed that SCI induced prominent morphological alterations in mitochondria at 24 h following injury (Fig. 2). The average cross-sectional length of mitochondria derived from the spinal cord of the SCI group was significantly decreased (P < 0.01 compared with the Sham operation group). Besides, the number of damaged mitochondria, the overall number of mitochondria, as well as the mitochondrial score were increased in the SCI group (P < 0.01 compared with Sham operation group). These data indicate that 24 h following SCI, mitochondria may indeed be undergoing fission leading to mitochondrial impairment. To determine the potential effects of ALC on mitochondrial impairment induced by SCI, a group of rats underwent ALC injection. We found that ALC injection efficiently maintained the length of mitochondria, reduced the number of damaged mitochondria, decreased the overall number of mitochondria, and reversed the mitochondrial score as compared with the SCI group (P < 0.05).
Fig. 1. The expression levels of mitochondria-related proteins in the spinal cord derived from normal control and SCI rats. Spinal cord tissues were removed from normal control rats or rats at 4, 8, 16, or 24 h following SCI. (A) Representative Western blotting data. The relative integrated density value (IDV) analysis of Mfn1 (B), Mfn2 (C), Drp1 (D), Fis1 (E) and cyto-CytC (F). *P < 0.05, **P < 0.01 vs. normal control group; *P < 0.05, **P < 0.01 vs. SCI-24 h group. Data were calculated from five independent experiments.

Fig. 2. Ultrastructural features of mitochondria in spinal cord tissues derived from different groups of rats. The ultrastructure of mitochondria was examined by TEM at 24 h following injury. Representative TEM images of (A) Sham operation group, (B) SCI group, and (C) SCI+ALC group were shown. Scale bars, 500 nm. Single arrow indicates rounded mitochondria; double arrows indicate short rod-like mitochondria; three arrows indicate long rod-like mitochondria; N indicates nucleus; 0–4 indicates the different score of mitochondria. (D) The average cross-sectional length of mitochondria. (E) The average number of total and damaged mitochondria per 1 μm² cytosol area. (F) Mitochondrial score. *P < 0.05, **P < 0.01 vs. Sham operation group, *P < 0.05, **P < 0.01 vs. SCI group. Data were calculated from five independent experiments.
3.3. ALC ameliorated SCI-induced mitochondrial dysfunction

As expected, the mitochondrial membrane potential and the mitochondrial Na⁺-K⁺-ATPase activity were dramatically reduced at 24 h following SCI (P<0.01 compared with Sham operation group) (Fig. 3). Remarkably, ALC administration ameliorated the loss of mitochondrial membrane potential and the reduction of mitochondrial Na⁺-K⁺-ATPase activity (P<0.05 compared with SCI group), indicating that ALC administration efficiently ameliorated the dysfunction of mitochondria induced by SCI.

3.4. Effects of ALC on mitochondria-related protein expression

At 24 h following SCI, the expression levels of Mfn1, Mfn2 and Bcl-2 in total protein extracts were significantly decreased, while Drp1, Fis1, and Bax in total protein extracts as well as cyto-CytC were markedly increased (Fig. 4). ALC administration reversed the
downregulation of Mfn1, Mfn2, Bcl-2, and the upregulation of Drp1, Fis1, Bax and cyto-CytC induced by SCI.

3.5. ALC ameliorated SCI-induced cell apoptosis

As shown in Fig. 5, SCI resulted in a major increase in the proportion of TUNEL-positive apoptotic cells 24 h post-surgery. Despite persistence of a moderate amount of TUNEL-positive cells in the spinal cord of rats receiving ALC treatment, the percentage of apoptotic cells was greatly reduced when compared with the SCI group (P < 0.01).

4. Discussion

Mitochondria are responsible for cellular energy production, and therefore play key roles in the maintenance of cell survival and death. Previous work reveals a role for mitochondrial fusion and fission events in the regulation of cell injury following SCI [12]. We also detected the ultrastructural damage of mitochondria and the altered expression levels of mitochondria-related proteins in the spinal cord of SCI rats.

Drp1 is a large cytoplasmic GTPase that translocates to mitochondria and mediates mitochondrial fission by interacting with its receptor Fis1 [13,14]. Overexpression of Drp1 or Fis1 in cells induces mitochondrial fission and cell apoptosis, whereas inhibition of Drp1 or Fis1 efficiently inhibits cellular apoptosis [15,16]. In addition, Mfn1 and Mfn2, the dynamin-related GTPases, mediate mitochondrial fusion [17]. Overexpression of Mfn1 and Mfn2 promotes mitochondrial fusion and suppresses cellular apoptosis [18]. Here, we found that the mitochondrial fusion-related proteins were upregulated at 4 and 8 h following SCI, and their expression levels were gradually decreased at 16 and 24 h. Of note, the expression of mitochondrial fission-related proteins was contrary to those of fusion-related proteins. Finally, CytC levels in the cytosol underwent time-dependent gradual elevation. Increased release of CytC from mitochondria to the cytosol is associated with cellular apoptosis [19,20]. Therefore, it is possible that increased mitochondrial fission might serve as a self-defense mechanism against SCI by generating ATP and providing energy to resist cell damage during the early stage of injury [21]. However, with the excessive activation and amplification of apoptotic stressors, this compensatory mechanism could no longer prevent cell death, and increased mitochondrial fission as well as elevated CytC release finally led to apoptosis. Considering that we did not explore the detailed mechanism involved in this process, future study will be continued to investigate the cause or effect of mitochondrial dysfunction in this experimental model.

ALC attenuates mitochondrial dysfunction following SCI [11]. We found that intraperitoneal injection of 300 mg/kg ALC at 15 min and 6 h post-injury significantly ameliorated the ultrastructural alterations of mitochondria by maintaining their normal morphological features. TEM analysis further indicated that SCI-induced the presence of excessive rounded mitochondria (single arrows), which could be efficiently reversed by the administration of ALC. ALC treatment increased the number of short rod-like mitochondria (double arrows) after SCI injury. These evidences suggest that ALC may inhibit the mitochondria fission induced by SCI. In addition, ALC administration prevented mitochondrial dysfunction by maintaining the mitochondrial membrane potential and mitochondrial Na⁺-K⁺-ATPase activity following SCI, which in turn may have promoted the maintenance of normal mitochondrial structure and prevented early apoptosis. These data are consistent with
a previous study which showed that ALC treatment improved mitochondrial function following SCI [22]. ALC administration reversed the altered expression levels of key mitochondria-related proteins following SCI (increased the levels of mitochondrial fusion-related proteins Mfn1 and Mfn2; decreased the levels of mitochondrial fission-related proteins Drp1 and Fis1), reduced Cytc release from mitochondria, increased Bcl-2 levels, reduced Bax levels, suppressed the number of TUNEL-positive cells (cell apoptosis, indicated by arrows) and promoted cell survival. Hence, we deduce that ALC injection may prevent the morphological and dynamic changes of mitochondria, improve mitochondrial function and thereby reduce cellular apoptosis in the spinal cord following SCI.

In summary, our present study indicated that ALC administration may prevent cellular apoptosis by maintaining mitochondrial structure, dynamics and function in a rat model of SCI. Our findings suggest that ALC is valuable for maintaining mitochondrial bioenergetics and may be a promising agent for the treatment of SCI.

Acknowledgments

This study is supported by the National Natural Science Foundation project (81272074), Program for Liaoning Excellent Talents in University (LQ2014091) and President Foundation of Liaoning Medical University (XZY20130204). We thank Medijaden Bioscience limited for assisting in the preparation of this manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.neulet.2015.06.021.

References